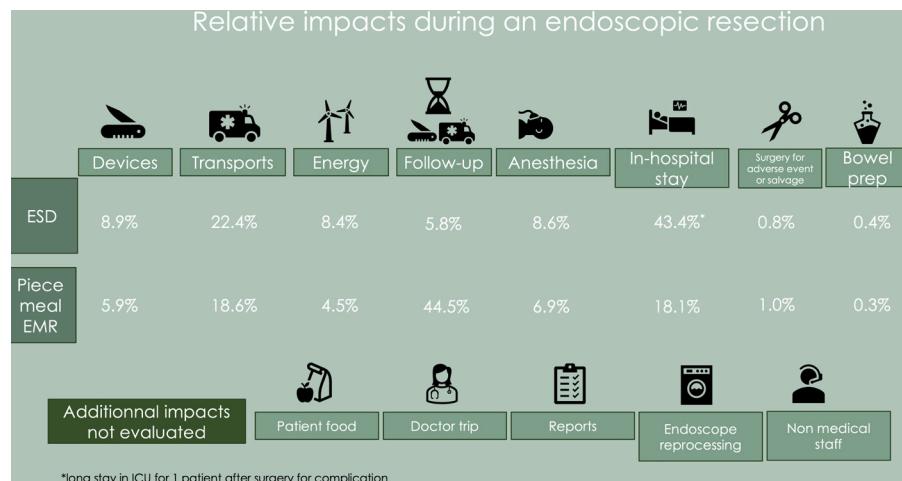


Devices substitution can reduce environmental burden: what about strategies substitution?


We read with great interest the article by Henniger *et al*¹ about reducing scope 3 carbon emissions in endoscopy and would like to discuss several points.

First, we commend the study's transparency, as manufacturers provided detailed information about their fabrication and delivery processes. This collaboration exemplifies our shared goal of environmental protection. Furthermore, this is the first prospective study with an intervention aimed at reducing the endoscopy footprint, leading to significant positive impacts and encouraging further interventional ecological research.

Educating staff to reduce scope 3 emissions by minimising the number of devices is a promising approach to fostering sustainability. However, the study's overall device reduction of just 10% may not substantially lower our global footprint, as the emissions related to procedure devices represent only a fraction of the total environmental impact.

In our recent study comparing two types of endoscopic resections,² we measured the carbon footprint of Endoscopic Submucosal Dissection (ESD) and Endoscopic Piecemeal Mucosal Resection (EPMR) for colorectal neoplasia. Although devices contributed 10.5 kg CO₂ for EPMR and 13.2 kg CO₂e for ESD, they accounted for only 16% and 18% of the total procedure footprint, respectively. The primary contributors were patient transport (51.5% for EPMR and 45.6% for ESD) and if we also consider the inpatient stay, estimated to be 45 kg CO₂ per day in hospital,³ the devices used in the procedure only represent 6 hours of hospitalisation.

When considering the entire management of colorectal neoplasia with the procedure and the successive follow-up procedures depending on the R0 status of the resection, the devices used during the first procedure only represent 5.9% of the global footprint in the piecemeal endoscopic mucosal resection (EMR) group and 8.9% in the ESD group (figure 1) for a total footprint of 150–180 kg CO₂e. In fact, when the number of follow-up to detect recurrences is increased due to the piecemeal nature of the resection, carbon footprint is finally increased compared with a one shot curative procedure (R0 resection) allowing to skip further follow-up for recurrence detection (and

Figure 1 Relative impacts of devices versus other components in the global footprint of endoscopic resection. EMR, endoscopic mucosal resection; ESD, endoscopic submucosal dissection; ICU, intensive care unit.

the corresponding transports).^{4,5} Contrary to the hypothesis stated in the recommendations,⁶ a more complex procedure performed at an expert centre can, although counterintuitive, result in a smaller carbon footprint than a simpler local technique, especially if it is part of a one-time curative treatment.

In various studies, patient transport consistently accounts for over 40% of the environmental impact of endoscopic care in different studies on ambulatory endoscopy,⁷ capsule endoscopy⁸ or in this recent evaluation about endoscopic resections.² Therefore, reducing hospital visits is crucial. The authors of this study achieved a 10% reduction in procedures through systematic re-evaluation of their necessity, which likely had a greater impact than device reduction. Implementing a standard question, 'Is this endoscopy useful or futile?' could streamline this process.

Additionally, substituting face-to-face consultations with telemedicine could further minimise transport emissions, as studies show teleconsultations maintain care quality and patient satisfaction⁹ while significantly reducing carbon footprints.¹⁰

In summary, we commend the authors for this excellent interventional study but emphasise that the environmental impact of our care is complex. Reducing patient transport through effective one-session strategies, limiting face-to-face consultations and cutting unnecessary procedures are practical methods to significantly decrease our impact without major structural changes (eg: buildings, expensive innovations).

Raphaëlle Grau,¹ Jérémie Jacques,^{2,3} Jérôme Rivory,¹ Mathieu Pioche

¹Gastroenterology and Endoscopy, Edouard Herriot Hospital, Lyon, France

²Gastroenterology, Hopital Dupuytren, Limoges, France

³UMR 7252, CNRS XLIM, Limoges, France

Correspondence to Dr Mathieu Pioche; mathieu.pioche@chu-lyon.fr

Contributors Conceived and designed the analysis: RG, MP. Collected the data for the LCA: MP, JJ, RG. Contributed data or analysis tools: JJ, JR. Performed the analysis: JJ, RG, MP. Drafted the paper: MP, RG, JR.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests Mathieu Pioche: consultant for Olympus, trainer for Olympus, Pentax, Norgine, Boston, Cook, Atract and Ipefix (coinvention). Jérôme Rivory: consultant for Olympus, trainer for Olympus, Boston, Cook, Ovesco. Jérémie Jacques: honorarium ERBE medical ESD training, Olympus ESD training, FUJIFILM ESD training, Pentax MEdical ESD training, Boston Scientific Therapeutic EUS training, MAYOLI SPINDLER Lecture about pancreatic disease, JANSSEN CILAG; consulting fee PENTAX MEDICAL Organization of European ESD training. Raphaëlle Grau has nothing to disclose.

Patient consent for publication Consent obtained directly from patient(s).

Ethics approval Not applicable.

Provenance and peer review Not commissioned; internally peer reviewed.

© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.

Check for updates

To cite Grau R, Jacques J, Rivory J, *et al*. Gut Epub ahead of print: [please include Day Month Year]. doi:10.1136/gutjnl-2024-334092

Received 13 October 2024

Accepted 24 October 2024

Gut 2024;0:1–2. doi:10.1136/gutjnl-2024-334092

ORCID iD

Mathieu Pioche <http://orcid.org/0000-0002-6482-2375>

REFERENCES

- 1 Henniger D, Lux T, Windsheimer M, et al. Reducing scope 3 carbon emissions in gastrointestinal endoscopy: results of the prospective study of the 'Green Endoscopy Project Würzburg.' *Gut* 2024;73:442–7.
- 2 Jacques J, Grau R, Jean Cottinet P, et al. Environmental impact of endoscopic submucosal dissection versus piecemeal resection for large colonic adenomas: A post hoc analysis of the resect colon study. *Gastrointest Endosc* 2023;97:AB429–30.
- 3 Prasad PA, Joshi D, Lighter J, et al. Environmental footprint of regular and intensive inpatient care in a large US hospital. *Int J Life Cycle Assess* 2022;27:38–49.
- 4 Ferlitsch M, Hassan C, Bisschops R, et al. Colorectal polypectomy and endoscopic mucosal resection: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2024. *Endoscopy* 2024;56:516–45.
- 5 Pimentel-Nunes P, Libânia D, Bastiaansen BAJ, et al. Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2022. *Endoscopy* 2022;54:591–622.
- 6 Rodríguez de Santiago E, Dinis-Ribeiro M, Pohl H, et al. Reducing the environmental footprint of gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA) Position Statement. *Endoscopy* 2022;54:797–826.
- 7 Lacroute J, Marcantoni J, Petitot S, et al. The carbon footprint of ambulatory gastrointestinal endoscopy. *Endoscopy* 2023;55:918–26.
- 8 Pioche M, Cunha Neves JA, Pohl H, et al. Environmental impact of smallbowel capsule endoscopy. *Endoscopy* 2024.
- 9 Mounessa JS, Chapman S, Braunberger T, et al. A systematic review of satisfaction with teledermatology. *J Telemed Telecare* 2018;24:263–70.
- 10 Purohit A, Smith J, Hibble A. Does telemedicine reduce the carbon footprint of healthcare? A systematic review. *Future Healthc J* 2021;8:e85–91.